Sourcecode: Example3.c

Sourcecode: Example3.c

] COLLABORATORS
TITLE :
Sourcecode: Example3.c
ACTION NAME DATE SIGNATURE
WRITTEN BY February 12, 2023

REVISION HISTORY

NUMBER

DATE DESCRIPTION

NAME

Sourcecode: Example3.c iii

Contents

1 Sourcecode: Example3.c 1
L1 Example3.c o e e 1

Sourcecode: Example3.c

Chapter 1

Sourcecode: Example3.c

1.1

/ %
/ *
/ *
/ *
/ *
/ *
/ *
/ *

*/
*/
*/
*/
*/
*/
*/
*/

Example3.c
/*k*k*k*k*k*k**‘k‘k*k*‘k*k*k***************‘k*******************‘k‘k‘k**‘k‘k‘k*/
Amiga C Encyclopedia (ACE) Amiga C Club (ACC)

Manual: AmigaDOS Amiga C Club
Chapter: Advanced Routines Tulevagen 22
File: Example3.c 181 41 LIDINGO
Author: Anders Bjerin SWEDEN

Date: 93-03-17

/ *
/ *
/ *
/ %
/ *
/ *
/ *
/ *

Version: 1.0
Copyright 1993, Anders Bjerin - Amiga C Club (ACC)

Registered members may use this program freely in their
own commercial/noncommercial programs/articles.

*/
*/
*/
*/
*/
*/
*/
*/

/***/

/ *
/ *
/ *
/ *
/ *
/ *
/ *
/ *
/ *

/ %

This example demonstrates how to examine all objects in
directory or volume. The program needs a directory or
volume name as the only argument and it will then list
all files and directories (subdirectories) in that
directory or volume. This is a good example on how to
use the Examine () and ExNext () functions.

This example can be used with all versions of the dos
library.

Include the dos library definitions: =/

#include <dos/dos.h>

/ *

Include the memory type definitions: (MEMF_ANY, MEMF_CLEAR...

#include <exec/memory.h>

/ %

Now we include the necessary function prototype files:

*/
*/
*/
*/
*/
*/
*/
*/
*/

*/

*/

Sourcecode: Example3.c

#include <clib/dos_protos.h> /* General dos functions... */
#include <clib/exec_protos.h> /+ System functions... */
#include <stdio.h> /+ Std functions [printf()...] =*/
#include <stdlib.h> /+ Std functions [exit()...] */
#include <string.h> /* Std functions [strlen()...] x/

/* Set name and version number: x/
UBYTE *version = "S$VER: AmigaDOS/Advanced Routines/Example3 1.0";

/* Declared our own function(s): =x/

/% Our main function: =*/
int main(int argc, char *argv[]);

/* Main function: =/

int main(int argc, char xargvl[])
{
/* "BCPL" pointer to our lock: =/
BPTR my_lock;

/* Pointer to our FileInfoBlock which we will allocate: =*/
struct FileInfoBlock »my_fib;

/* This program needs one arguement: «/
/+ (a file, directory or volume name) =/
if(argc !'= 2)

{
/* Wrong number of arguments! */
printf("Error! Wrong number of arguments!\n");
printf("You must enter a directory or volume name.\n");
printf("Example3 Name/A\n"); /+ Simple template =*/

/* Exit with an error code: =/
exit (20);

/» 1. Try to lock the object: (Shared access is enough.) =/
my_lock = Lock(argv[1], SHARED_LOCK);

/+ Could we lock the object? */
if('my_lock)
{
/* Problems! Inform the user: x/
printf("Could not lock the object!\n");

/* Exit with an error code: x/

Sourcecode: Example3.c

exit (21);

/* 2. Allocate enough memory for a FileInfoBlock structure: =/
my_fib = (struct FileInfoBlock x)
AllocMem(sizeof(struct FileInfoBlock), MEMF_ANY | MEMF_CLEAR);

/* Check if we have allocated the memory successfully: =*/
if(!my_fib)
{

/+ Problems! Inform the user: */

printf ("Not enough memory!\n");

/* Unlock the object: */
UnLock (my_lock);

/* Exit with an error code: x/
exit (22);
bi

/+ 3. Get some information about the object we have locked: =/
if(Examine(my_lock, my_fib))
{
/* 4. Check if it is a directory or volume: x/
if(my_fib->fib_DirEntryType > 0)
{
/+ Print out the directory/device name with underlined characters: =/
/+x \033[4m : Underline =/
/+ \033[0m : Normal %/
printf("\033[4m%s\033[0m\n", my_fib->fib_FileName);

/+x As long as we find objects we stay in the loop: =*/
while (ExNext (my_lock, my_fib))
{
/+x If it is a file we print out the name with white characters. =*/
/+ However, if it is a (sub)directory we use orange: */
if(my_fib->fib_DirEntryType < 0)
printf("$s\n", my_fib->fib_FileName); /* File =/
else
printf("\033[33m%s\033[31m\n", my_fib->fib_FileName); /% Dir =/

/* \033[33m : Orange (Colour 3) x/
/+* \033[31m : White (Colour 1) =/

/+ The ExNext () function has failed. It was either an error =/
/* or there were simply no more objects in the direcotry/ */
/* volume. We must therefore call IoErr() to see what *x/
/+ actually happened. If we get the error code: */

/+ "ERROR_NO_MORE_ENTRIES" there were simply no more objects =/

Sourcecode: Example3.c

4/4

/* to examine, else something went wrong. */
if(IoErr() == ERROR_NO_MORE_ENTRIES)

printf("No more files!\n");
else

printf ("Error while reading!\n");

}

else

{

/+ The user gave us a file name! We can =/

/* not list objects inside a file! */
printf("$s is a file!\n", argv[1l]);
printf("This program needs a directory or volume name!\n");
}
}
else
printf("Could not examine %s!\n", argv[1]);

/+ Deallocate the memory we have allocated: x/
FreeMem(my_fib, sizeof(struct FileInfoBlock));

/* Unlock the file: «/
UnLock (my_lock);

/% The End! «*/
exit(0);

	Sourcecode: Example3.c
	Example3.c

